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Abstract

Kleinberg and Mullainathan showed that, in principle, language generation is always possible: with
sufficiently many positive examples, a learner can eventually produce sentences indistinguishable from
those of a target language. However, the existence of such a guarantee does not speak to its practical
feasibility. In this work, we show that even for simple and well-studied language families—such as
regular and context-free languages—the number of examples required for successful generation can be
extraordinarily large, and in some cases not bounded by any computable function. These results reveal a
substantial gap between theoretical possibility and efficient learnability. They suggest that explaining the
empirical success of modern language models requires a refined perspective—one that takes into account
structural properties of natural language that make effective generation possible in practice.

1 Introduction

The study of language identification problems in the limit started in the 60s with the seminal work by
Gold [2]. In a nutshell, a (finite or infinite) collection £ of languages is said to be identifiable in the limit
if there exists a learning algorithm that, given an infinite sequence of positive examples from some target
language L € L, produces a sequence of hypotheses Hy, Hs, ... from £ such that, after finitely many steps,
all subsequent hypotheses coincide exactly with L. Gold showed that even the class of regular languages is
not identifiable in the limit, whereas finite families of languages are. Later, Angluin refined and deepened
the theory by characterizing, in purely structural terms, the collections of languages that are identifiable in
the limit [I]. Overall, the concept turned out to be extremely restrictive—very few nontrivial collections
of languages satisfy these conditions—and has often been interpreted as formal support for the “poverty of
the stimulus” argument in linguistics, suggesting that purely data-driven learning is insufficient to explain
language acquisition without some form of innate prior structure or constraints.

The recent success of LLMs contrasts sharply with the aforementioned negative results on learnability.
Even though LLMs are trained on finite samples and mostly see only positive examples, they still manage
to capture many of the structural and semantic patterns of natural language. This suggests that useful
generalization may be possible without explicitly identifying the underlying grammar. In this sense, the
phenomenon revealed by LLMs naturally motivates the problem of language generation in the limit, recently
studied by Kleinberg and Mullainathan [9], which seeks to formalize and understand how a computational
process can produce data indistinguishable from that of a target language—shifting the focus from identifying
the underlying rules to generating behavior consistent with them. Their results show that such generation is in



fact always possible, provided the collection L is countable, highlighting a fundamental asymmetry between
learning and generation: while exact identification may be unattainable, successful imitation can always
be achieved under mild assumptions. As Kleinberg and Mullainathan state, this shows that, in a certain
sense, language identification and language generation are fundamentally different problems. Noticeably, the
concept of language generation in the limit has been further studied and refined in several subsequent works
[12, 13, 6, [7, 18, 10, 14 [B3].

But while the results on language generation in the limit show that the problem is “computable”, this does
not necessarily mean it is “feasible”. From a computational complexity perspective, feasibility depends on
how many examples a learner must process before it can reliably generate strings indistinguishable from those
of the target language. If this sample complexity or computational cost grows astronomically with the size
or structure of the language, then the theoretical possibility of generation becomes practically meaningless.
Understanding language generation through this lens—by quantifying the resources required to achieve it—is
therefore essential to determine whether the phenomenon observed in systems like LLMs reflects genuine
computational feasibility or merely a theoretical existence result.

One might expect that language generation becomes infeasible if considered over arbitrary computable
languages, where complexity pathologies are the norm. What is less obvious—and what we show—is that the
difficulty remains even when we restrict attention to the most well-behaved and extensively studied families.
In particular, we analyze language generation problem for regular and context-free languages, which form
the core of formal language theory and underlie fundamental applications in computer science. Despite their
relatively tame structure, these classes already exhibit inherent barriers to feasible generation. This provides
a more nuanced view: the challenge is not merely a consequence of working with overly expressive language
families, but is intrinsic to language generation itself.

In particular, we show that generating from finite families of (deterministic) finite automata requires a
double-exponential number of examples on the size of the family. This indicates that, although generation
is theoretically possible, it quickly becomes intractable even for simple language classes. In contrast, for
context-free languages, we prove a strong negative result: there exists no computable bound on the number of
examples needed to guarantee successful generation, even when the family contains only two infinite context-
free languages defined by (deterministic) pushdown automata. Hence, increasing expressive power—from
regular to context-free languages—comes at an enormous computational cost. While these results do not
directly imply that the notion of language generation in the limit is inadequate for explaining the success
of large language models, they do suggest that if such a perspective is to be adopted, it must be done in a
much more refined and careful way—one that also accounts for why the kinds of languages LLMs seem to
learn in practice require far fewer examples.

Beyond these results, our work also sheds light on interesting open problems in formal language theory.
In particular, it is easy to observe that the lower bound on the number of examples needed for language
generation in the limit is determined by the largest size of a finite intersection of languages in the collection
L (see Proposition . The study of this quantity has received little attention in the literature, yet it is
closely related to fundamental questions about the complexity of language intersection. Notably, deciding if
the intersection of a collection of regular languages is non-empty is PSPACE-complete [11], while the same
problem becomes undecidable for context-free languages (folklore). Hence, understanding the structure and
size of finite intersections provides a new perspective that bridges language learning and complexity results.

2 Language generation in the limit

2.1 Non-uniform generation

Let ¥ be a finite alphabet. A generator is a function G that takes a finite sequence of words over ¥ and
returns an infinite set of words over .

Definition 1 (Language generation in the limit.). A set F of infinite languages over ¥ to be generatable in
the limit, if there exists a generator G such that for any L € F, and for any ordering wi,ws,ws, ... of the
words of L, there exists an integer m > 1 such that G(ws, ..., wy) s an infinite subset of L for all n > m.



Kleinberg and Mullainathan show that all countable F are generatable in the limit [9], and Li, Raman,
and Tewari [I2] provide a necessary and sufficient conditions for an arbitrary F to be generatable in the
limit.

2.2 Uniform generation

Notice that in the previous definition, m, the size of the training set needed to generate from an unknown
L € F depends both on L and on its ordering. A natural question from the practical perspective is which
families F admit a uniform bound on m. Formally:

Definition 2 (Uniform generation). Let m > 1 be a fized integer. A set F of infinite languages is m-
generatable, if there exists a generator G such that for every L € F and for every m distinct words
Wi, ..., Wy € L, we have that G(wy,...,wy,) is an infinite subset of L for every n > m.

Li, Raman, and Tewari charecterize families F that are m-generatable for some m € N. We first provide
a simpler and more precise version of this result.

Proposition 1. A set F of infinite languages is not m-generatable if and only if there exists a non-empty
S C F such that ﬂLes L is finite but has size at least m.

Proof. Assume first that there exists a non-empty S C F such that (), s L is finite but has size at least m.
Assume for contradiction that F admits an m-generator G. Take m distinct words wy, ..., wy, € () res L-
The set G(wr,...,wy,,) is infinite and hence contains some word w ¢ [, g L. That is, we have w ¢ L and
wi, ..., Wy, € L for some L € S. Hence, G(wy, ..., w,) is not a subset of L, a contradiction.

Assume, in turn, that there exists no non-empty S C F such that (), g L is finite but has size at least
m. Given m distinct words wy, ..., w,,, we define G(w1,...,w,,) as the intersection of all L € F such that
w1, ..., W, € L. Observe that by definition, for every L € F and every distinct wy,...,w, € L, we have
that G(ws1, ..., wy,) is a subset of L. We have to show that this is an infinite subset. Define S to be the set
of all languages from F that contain ws, ..., w,,. By definition, S is non-empty and

G(wy,...,wy) = ﬂ L
LeS

has size at least m, meaning that it has to be infinite. O

Observe then that, when F is finite, it is m-generatable for some m € N, because there are only finitely
many possible sets § C F that may arise as finite intersections. However, to understand the feasibility of
generation, we must go beyond the mere existence of such an m and instead quantify its magnitude. Finite
families thus provide a natural setting: they avoid the classical impossibility phenomena associated with
infinite families, while still allowing us to meaningfully examine how large m must be as a function of the
descriptive complexity of the languages involved.

3 Results for regular languages

We begin by studying m-generatability for finite families of regular languages. The main question we
address is the following: how many examples are required to generate from an unknown regular language L
recognizable by a finite family of finite automata? We show that, in the worst case, a double-exponential
number of examples in the size of the family is necessary.

3.1 Finite automata

Recall that a finite automaton over an alphabet ¥ is a tuple A = (Q, qo, F, ), where (a) @ is a finite set of
states, (b) qo € @ is the initial state, (c) F' C @ is the set of final states, and (d) A C Q x X x Q is a set of
transition rules.



A configuration is a triple (q,w) where g € @ is the current state and w € ¥* is the unread input. The
transition relation F is defined as follows:

(¢,aw) + (¢',w) if (g,a,q") € A.
The accepted language is:
L(A) ={w e X | (qo,w) F* (g, ¢€) for some q € F'}.

Languages accepted by finite automata are known as regular languages.

A deterministic finite automaton (DFA) is a finite automaton in which, for every state ¢ € @ and symbol
a € X, there is at most one transition of the form (¢,a,q’) € A. Tt is a well-known fact that every regular
language can be recognized by a DFA. Thus, determinism does not restrict the class of regular languages.
However, translating from a finite automaton into an equivalent DFA takes exponential time.

3.2 Theoretical results

We establish now our first main result regarding the sample complexity of uniform language generation in
the limit for regular languages specified by finite families of finite automata. Our lower bounds holds even
for the class of regular languages specified as DFAs.

Theorem 1. The following statements hold:

a) Let n,k € N, and let F be a family of infinite reqular languages over the binary alphabet such that

|F| = k and each L € F is accepted by a finite automaton with at most n states. Then F is ont.
generatable.

b) There exists ¢ € N such that, for every n € N and k < 2", there exists a family F of infinite regular
languages over the binary alphabet satisfying the following: |F| = k, each L € F is accepted by an

(cn)-state DFA, and F is not 272" _generatable.

Proof. We first establish a). Let F be a k-size family of infinite regular languages, each one of them specified
by n-state finite automata. By the standard product construction, each intersection (], s L, for S C F,
is recognizable by a finite automaton with at most n* states. If this intersection is finite, it cannot have a
word of length n¥ or larger. Hence, this intersection has size less than on, By Proposition |1} the family is
on” generatable.

We now proceed to the proof of b). We split an input word into blocks of length n (if the input length
is not a multiple of n, the word will not be accepted by any of the languages from the family). Let
w; < we < ...waon be the lexicographic ordering of the binary words of length n. The language Lp is
the language of all words that have at most one block, equal to wy. The language L; is the language of
words where there are no two occurrences of the block w; without an occurrence of some block wy, ..., w;_1
between them. All these languages can be accepted by O(n)-DFAs. Indeed, for L;, we check an automata
that looks for the first difference of the current block with w;. If the current block is smaller then w; in the
lexicographic order, we reset. If it is equal to w;, we have to be check not to get w; again before resetting.

We first show that the intersection of Ly, ..., Ly is finite but has a word of length at least n-2*. Indeed,
consider any word in the intersection. Since it is in Ly, it has at most one block w;. Before and after wy, it
can have at most one block ws. Now, we have at most 4 spaces where to put ws:

W3 W2 W3 W1 W3wW2ws3

and so on, each block can appear only finitely many time.

On the other hand, one can see that by adding blocks w1, wo, w3 in the above manner (when we add w;,
we add it between all the existing blocks), we get 1 block wi, 2 blocks ws, 4 blocks ws, and so on. In the
end, we get 2¥ blocks wy,, and the conditions will be satisfied since wy, is a word of length n.



So far, we have only obtained a long word of length n - 2¥. To construct an intersection of size 2"‘2k,
we apply the same construction to the odd n-bit blocks, while allowing the even n-bit blocks to be filled
arbitrarily. In addition, we impose the restriction that each language L; contains an even number of n-bit
blocks, so that the number of odd n-bit blocks is equal to the number of even m-bit blocks in the words
belonging to the intersection. In this way, since there is one word in the intersection whose odd n-bit blocks
contain n - 2F bits, we obtain 272" words in the intersection by independently assigning 0 or 1 to each bit in
the even n-bit blocks. O

As a corollary of Theorem [I} we obtain a triple-exponential lower bound on the number of examples
required for generation in the limit for any finite family of infinite regular languages over the binary alphabet,
recognizable by DFAs of linear size.

Corollary 1. There exists a constant ¢ € N such that, for every n € N, there is a finite family F of infinite
regular languages over the binary alphabet such that each L € F is accepted by a (cn)-state DFA, and F is

not 272%" -generatable.

4 Results for context-free languages

We now turn to m-generatability for finite families of context-free languages. The corresponding question is:
how many examples are required to generate from an unknown language L recognizable by a deterministic
pushdown automaton of a certain size? In stark contrast to the regular case, we show that there is no
computable bound on the number of examples sufficient for uniform generation, even when the family
contains only two infinite context-free languages.

4.1 Pushdown automata

A pushdown automaton (PDA) over an input alphabet ¥ is a tuple P = (Q, X, T, qo, Zo, A, F), where: (a) Q
is a finite set of states, (b) T is a finite stack alphabet, (¢) qo € Q is the initial state, (d) Zy € T is the initial
stack symbol, (e) F C @Q is the set of final states, and (f) A C Q x (XU {e}) xI' x @ x I'* is a finite set of
transition rules.

A configuration is a triple (¢, w,«) where ¢ € @ is the current state, w € ¥* is the unread input, and
a € T'* is the stack contents (the leftmost symbol is the top of the stack). The transition relation - is defined
as follows:

(¢;aw, XB) & (¢',w,vB) if (¢,a,X,q',7) € A.
The accepted language is:

L(P) ={w € X" | (qo,w, Zo) F* (g, €, ) for some q € F}.

Languages accepted by PDAs are known as context-free languages.

4.2 Theoretical results

Theorem 2. There exists no algorithm that, given two infinite context-free languages L1, Lo defined by
PDAs, outputs some m such that {L1, Lo} is m-generatable (we assume that the algorithm might not halt if
either Ly or Lo is finite).

Proof. We show that if such an algorithm exists, then the halting problem is solvable.

Lemma 1. There is an algorithm that, given a Turing machine M without an input, constructs two PDAs
accepting languages Ly and Lo with the following property: if M halts in precisely t computation steps, then
2t = |Ly N Ly|.



Assuming that Lemmal[l]is proved and that the algorithm from Theorem [2]exists, we show the decidability
of the halting problem, which leads to a contradiction. More precisely, we show that the problem of verifying,
given a Turing machine M, whether M halts on input the empty string is decidable. Given M, we use the
algorithm in Lemma [I] to construct two context-free languages Ly and L, such that if M, on input the
empty string, halts in precisely ¢ computation steps, then 2! = |L; N La|. Tt is a folklore result that, given
a context-free language L, one can compute |L| (which is either a natural number or +00). We use this to
compute |L1| and |Ls|, and we consider three cases for our proof.

1. If Ly is finite, we compute some ¢ such that 2¢ > |Li| > |L; N Lz|. Note that M cannot halt in ¢ or
more steps. So we run it for ¢ — 1 steps, and if it has not halted, we output that M does not halt.

2. If Ly is finite, then we proceed as in the previous case but considering ¢ such that 2¢ > |Ls| > |L1 N La|.

3. If Ly and Ly are both infinite, we use the algorithm from Theorem [2] to obtain some number m such
that {Lq, Lo} is m-generatable. We compute some ¢ such that m < 2!. By Proposition |1} we know
that |L; N La| < 2° for every s > t. Hence, the machine M in this case cannot halt in ¢ or more steps.
Again, to decide if M halts, it is then enough to run it for ¢ — 1 steps.

Proof of Lemmal[ll Assume that M halts in ¢ computation steps, with Ci,...,C; being its sequence of
configurations (each configuration is a word, coinciding with the current content of the tape; the letter,
corresponding to the current position of the head, additionally indicates the current state of the machine).
In the construction, we use two special delimiting symbols #g, #1 that are not included in the alphabet of
M. We give two context-free grammars L1, Lo whose intersection consists exactly of words of the form

Cl#ilcé%#h ce CtR#Zt

if ¢ is even, and
Cl #ucf#zz s Ct#it

if ¢ is odd; here i1, ...,4; € {0,1} and w® denotes the reverse of a word w.

More specifically, we give L1, Lo via pushdown automata; first, one of the PDAs checks that C; is the
initial configuration of M and that C; is the only configuration in the sequence with an accepting state (the
stack is not even required for this part). It remains to check that C;4; is obtained from C; correctly by the
rules of M; one PDS will do that for odd 4, and the other for even i. For example, the PDS for L will first
push Oy to the stack. Then, while reading C£, it will simultaneously free the stack while popping C; and
comparing it with Cs, checking that they are almost equal, and differ only around the letter with the head,
according to the transition function of M. After reading, C£, the stack is free, and the first PDS repeats
the same check for C5, Cy, then for C5, Cs and so on, while the second PDS does the same for Cy, C3, then
Cy,Cs, and so on. As the symbols #;, can take any of the values 0 or 1, we conclude that if M halts in
precisely ¢ computation steps, then |L; N Ly| = 2. O

The proof of Lemma [I] concludes the proof of Theorem [2] O

5 Final Remarks

Kleinberg and Mullainathan highlight that language generation is, in principle, possible even under worst-case
presentations of positive data, without relying on statistical regularities [9]. Our results refine this picture
by showing that the feasibility of such generation can hinge critically on the structure of the language family.
In particular, the lower bounds we obtain arise from the size of finite intersections among the languages in
the collection: when such intersections are large, the number of examples required for successful generation
can be enormous, or even beyond any computable bound. This phenomenon already appears in regular
and context-free languages, indicating that the challenge is not confined to highly expressive or pathological
classes. At the same time, it suggests a possible explanation for the practical tractability of generation
in natural settings: if the relevant intersections are much smaller in the kinds of language structures and



distributions encountered by large language models, then generation may become feasible in practice despite
the worst-case barriers. Thus, the key question is not only whether generation is possible, but under which
structural conditions it can be achieved efficiently.

This perspective complements recent work showing that LLMs must, under very general assumptions,
occasionally produce outputs that fall outside the target language they aim to model [B [4]. These “halluci-
nation” results demonstrate that even an idealized, perfectly calibrated model cannot avoid some deviations
when only finite positive data are available. Taken together with our findings, this suggests a broader re-
search direction: rather than treating generation, accuracy, and sample efficiency as independent concerns,
a full account of the behavior of modern language models must understand how structural properties of
language and data distributions jointly constrain (and enable) successful generalization. Developing such a
unified framework remains an important open challenge.
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